Sub-technology market share strongly affects critical material constraints in power system transitions

Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 C. Nat. Clim. Change 5, 519–527 (2015).
Google Scholar
Rockström, J. et al. A roadmap for rapid decarbonization. Science 355, 1269–1271 (2017).
Google Scholar
Wang, Y. et al. Accelerating the energy transition towards photovoltaic and wind in China. Nature 619, 761–767 (2023).
Google Scholar
Fan, J. L. et al. Co-firing plants with retrofitted carbon capture and storage for power-sector emissions mitigation. Nat. Clim. Change 13, 807–815 (2023).
Google Scholar
Hertwich, E. G. et al. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl. Acad. Sci. USA 112, 6277–6282 (2015).
Google Scholar
Vidal, O., Goffé, B. & Arndt, N. Metals for a low-carbon society. Nat. Geosci. 6, 894–896 (2013).
Google Scholar
Kavlak, G., McNerney, J., Jaffe, R. L. & Trancik, J. E. Metal production requirements for rapid photovoltaics deployment. Energy Environ. Sci. 8, 1651–1659 (2015).
Google Scholar
Elshkaki, A. Materials, energy, water, and emissions nexus impacts on the future contribution of PV solar technologies to global energy scenarios. Sci. Rep. 9, 19238 (2019).
Google Scholar
Pennington D., et al. Methodology for Establishing the EU List of Critical Raw Materials – Guidelines. (Publications Office of the European Union, 2017).
Graedel, T. E. & Cao, J. Metal spectra as indicators of development. Proc. Natl. Acad. Sci. USA 107, 20905–20910 (2010).
Google Scholar
Watari, T. et al. Global metal use targets in line with climate goals. Environ. Sci. Technol. 54, 12476–12483 (2020).
Google Scholar
Fthenakis, V. Sustainability of photovoltaics: The case for thin-film solar cells. Renew. Sustain. Energy Rev. 13, 2746–2750 (2009).
Google Scholar
Zuser, A. & Rechberger, H. Considerations of resource availability in technology development strategies: The case study of photovoltaics. Resour. Conserv. Recycl. 56, 56–65 (2011).
Google Scholar
Habib, K. & Wenzel, H. Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling. J. Clean. Prod. 84, 348–359 (2014).
Google Scholar
Li, C. et al. Future material requirements for global sustainable offshore wind energy development. Renew. Sustain. Energy Rev. 164, 112603 (2022).
Google Scholar
Li, J. S. et al. Critical rare-earth elements mismatch global wind-power ambitions. One Earth 3, 116–125 (2020).
Google Scholar
De Koning, A. et al. Metal supply constraints for a low-carbon economy? Resour. Conserv. Recycl. 129, 202–208 (2018).
Google Scholar
Valero, A., Valero, A., Calvo, G. & Ortego, A. Material bottlenecks in the future development of green technologies. Renew. Sustain. Energy Rev. 93, 178–200 (2018).
Google Scholar
Wang, S. et al. Future demand for electricity generation materials under different climate mitigation scenarios. Joule 7, 309–332 (2023).
Google Scholar
Elshkaki, A. & Shen, L. Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications. Energy 180, 903–917 (2019).
Google Scholar
Wang, P., Chen, L. Y., Ge, J. P., Cai, W. & Chen, W. Q. Incorporating critical material cycles into metal-energy nexus of China’s 2050 renewable transition. Appl. Energy 253, 113612 (2019).
Google Scholar
Wei, W. et al. Toward carbon neutrality: Uncovering constraints on critical minerals in the Chinese power system. Fundam. Res. 2, 367–374 (2022).
Google Scholar
Nassar, N. T., Wilburn, D. R. & Goonan, T. G. Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios. Appl. Energy 183, 1209–1226 (2016).
Google Scholar
Moss, R., Tzimas, E., Kara, H., Willis, P. & Kooroshy, J. Critical Metals in Strategic Energy Technologies: Assessing Rare Metals as Supply-Chain Bottlenecks in Low-Carbon Energy Technologies. Publications Office of the European Union. (2011).
Carrara, S., Alves Dias, P., Plazzotta, B. & Pavel, C. Raw Materials Demand for Wind and Solar PV Technologies in the Transition Towards a Decarbonised Energy System. Publications Office of the European Union. (2020).
Gervais, E., Shammugam, S., Friedrich, L. & Schlegl, T. Raw material needs for the large-scale deployment of photovoltaics – Effects of innovation-driven roadmaps on material constraints until 2050. Renew. Sustain. Energy Rev. 137, 110589 (2021).
Google Scholar
Månberger, A. & Stenqvist, B. Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development. Energy Policy 119, 226–241 (2018).
Google Scholar
Junne, T., Wulff, N., Breyer, C. & Naegler, T. Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt. Energy 211, 118532 (2020).
Google Scholar
Schlichenmaier, S. & Naegler, T. May material bottlenecks hamper the global energy transition towards the 1.5 °C target? Energy Rep 8, 14875–14887 (2022).
Google Scholar
Yao, T., Geng, Y., Sarkis, J., Xiao, S. & Gao, Z. Dynamic neodymium stocks and flows analysis in China. Resour. Conserv. Recycl. 174, 105752 (2021).
Google Scholar
Teodoro, C. A., et al. Comparison on the mechanical properties and corrosion resistance of zirlo and other zirconium alloys. In: 2007 International Nuclear Atlantic Conference – INAC 2007. Associação Brasileira de Energia Nuclear – ABEN (INAC, 2007).
Viebahn, P. et al. Assessing the need for critical minerals to shift the German energy system towards a high proportion of renewables. Renew. Sustain. Energy Rev. 49, 655–671 (2015).
Google Scholar
Shammugam, S., Gervais, E., Schlegl, T. & Rathgeber, A. Raw metal needs and supply risks for the development of wind energy in Germany until 2050. J. Clean. Prod. 221, 738–752 (2019).
Google Scholar
Benigni, P. et al. Enthalpy of mixing in the Ag-Cd-In ternary liquid phase. J. Chem. Thermodyn. 107, 207–215 (2017).
Google Scholar
Akkuzin, S. A., Litovchenko, I. Y., Tymentsev, A. N. & Chernov, V. M. Microstructure and mechanical properties of austenitic steel EK-164 after thermomechanical treatments. Russ. Phys. J. 62, 698–704 (2019).
Google Scholar
Watari, T. et al. Total material requirement for the global energy transition to 2050: A focus on transport and electricity. Resour. Conserv. Recycl. 148, 91–103 (2019).
Google Scholar
Wang, P. et al. Critical mineral constraints in global renewable scenarios under 1.5 °C target. Environ. Res. Lett. 17, 125004 (2022).
Google Scholar
Green, M. A. et al. Solar cell efficiency tables (Version 60). Prog. Photovolt. Res. Appl. 30, 687–701 (2022).
Google Scholar
Fraunhofer Institute for Solar Energy Systems. Photovoltaics Report. (2024).
Lee, T. D. & Ebong, A. U. A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 70, 1286–1297 (2017).
Google Scholar
Woodhouse, M. A., Smith, B., Ramdas, A. & Margolis, R. M. Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Road Map. (2019).
Sofia, S. E. et al. Economic viability of thin-film tandem solar modules in the United States. Nat. Energy 3, 387–394 (2018).
Google Scholar
International Renewable Energy Agency. Renewable Power Generation Costs in 2023. (2024).
Tian, X., Gong, Y., Wu, Y., Agyeiwaa, A. & Zuo, T. Management of used lead acid battery in China: Secondary lead industry progress, policies and problems. Resour. Conserv. Recycl. 93, 75–84 (2014).
Google Scholar
Song, Z. et al. A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy Environ. Sci. 10, 1297–1305 (2017).
Google Scholar
De Bastiani, M., Larini, V., Montecucco, R. & Grancini, G. The levelized cost of electricity from perovskite photovoltaics. Energy Environ. Sci. 16, 421–429 (2023).
Google Scholar
Duan, L. et al. Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat. Rev. Mater. 8, 261–281 (2023).
Google Scholar
Rong, Y. et al. Challenges for commercializing perovskite solar cells. Science 361, eaat8235 (2018).
Google Scholar
Siegler, T. D. et al. The path to perovskite commercialization: A perspective from the United States Solar Energy Technologies Office. ACS Energy Lett 7, 1728–1734 (2022).
Google Scholar
Carroll, J. et al. Availability, operation and maintenance costs of offshore wind turbines with different drive train configurations. Wind Energy 20, 361–378 (2017).
Google Scholar
Lacal-Arantegui, R. Materials use in electricity generators in wind turbines – State-of-the-art and future specifications. J. Clean. Prod. 87, 275–283 (2015).
Google Scholar
Colmenar-Santos, A., Perera-Perez, J., Borge-Diez, D. & dePalacio-Rodríguez, C. Offshore wind energy: A review of the current status, challenges and future development in Spain. Renew. Sustain. Energy Rev. 64, 1–18 (2016).
Google Scholar
Pavel, C. C. et al. Substitution strategies for reducing the use of rare earths in wind turbines. Resour. Policy 52, 349–357 (2017).
Google Scholar
Smith Stegen, K. Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis. Energy Policy 79, 1–8 (2015).
Google Scholar
Caduff, M., Huijbregts, M. A. J., Althaus, H. J., Koehler, A. & Hellweg, S. Wind power electricity: The bigger the turbine, the greener the electricity? Environ. Sci. Technol. 46, 4725–4733 (2012).
Google Scholar
Jensen, B. B., Mijatovic, N. & Abrahamsen, A. B. Development of superconducting wind turbine generators. J. Renew. Sustain. Energy 5, 023137 (2013).
Google Scholar
International Renewable Energy Agency. IRENASTAT Online Data Query Tool. (2024).
Millot, A., Krook-Riekkola, A. & Maïzi, N. Guiding the future energy transition to net-zero emissions: Lessons from exploring the differences between France and Sweden. Energy Policy 139, 111358 (2020).
Google Scholar
Wübbeke, J. Rare earth elements in China: Policies and narratives of reinventing an industry. Resour. Policy 38, 384–394 (2013).
Google Scholar
Shen, Y., Moomy, R. & Eggert, R. G. China’s public policies toward rare earths, 1975–2018. Miner. Econ. 33, 127–151 (2020).
Google Scholar
Han, Z. et al. Tracking two decades of global gallium stocks and flows: A dynamic material flow analysis. Resour. Conserv. Recycl. 202, 107391 (2024).
Google Scholar
Frenzel, M., Ketris, M. P., Seifert, T. & Gutzmer, J. On the current and future availability of gallium. Resour. Policy 47, 38–50 (2016).
Google Scholar
Frenzel, M., Mikolajczak, C., Reuter, M. A. & Gutzmer, J. Quantifying the relative availability of high-tech by-product metals – The cases of gallium, germanium and indium. Resour. Policy 52, 327–335 (2017).
Google Scholar
Song, H., Wang, C., Sun, K., Geng, H. & Zuo, L. Material efficiency strategies across the industrial chain to secure indium availability for global carbon neutrality. Resour. Policy 85, 103895 (2023).
Google Scholar
Funari, V. et al. Opportunities and threats of selenium supply from unconventional and low-grade ores: A critical review. Resour. Conserv. Recycl. 170, 105593 (2021).
Google Scholar
Hanna, F., Nain, P. & Anctil, A. Material availability assessment using system dynamics: The case of tellurium. Prog. Photovolt. Res. Appl. 32, 253–266 (2024).
Google Scholar
Nassar, N. T., Kim, H., Frenzel, M., Moats, M. S. & Hayes, S. M. Global tellurium supply potential from electrolytic copper refining. Resour. Conserv. Recycl. 184, 106434 (2022).
Google Scholar
Song, H., Wang, C., Sen, B. & Liu, G. China factor: Exploring the byproduct and host metal dynamics for gallium–aluminum in a global green transition. Environ. Sci. Technol. 56, 2699–2708 (2022).
Google Scholar
Zhang, L. & Xu, Z. Separating and recycling plastic, glass, and gallium from waste solar cell modules by nitrogen pyrolysis and vacuum decomposition. Environ. Sci. Technol. 50, 9242–9250 (2016).
Google Scholar
Zheng, K., Benedetti, M. F. & van Hullebusch, E. D. Recovery technologies for indium, gallium, and germanium from end-of-life products (electronic waste) – A review. J. Environ. Manage. 347, 119043 (2023).
Google Scholar
Li, Z., Qiu, F., Tian, Q., Yue, X. & Zhang, T. Production and recovery of tellurium from metallurgical intermediates and electronic waste – A comprehensive review. J. Clean. Prod. 366, 132796 (2022).
Google Scholar
He, J. et al. Towards carbon neutrality: A study on China’s long-term low-carbon transition pathways and strategies. Environ. Sci. Ecotechnol. 9, 100134 (2022).
Google Scholar
International Energy Agency. Net Zero by 2050: A Roadmap for the Global Energy Sector. (2021).
Zhang, S. et al. Targeting net-zero emissions while advancing other sustainable development goals in China. Nat. Sustain. 7, 1107–1119 (2024).
Google Scholar
Krieger, E. M., Cannarella, J. & Arnold, C. B. A comparison of lead-acid and lithium-based battery behavior and capacity fade in off-grid renewable charging applications. Energy 60, 492–500 (2013).
Google Scholar
Um, H. D. et al. Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries. Energy Environ. Sci. 10, 931–940 (2017).
Google Scholar
Yang, Y. et al. Perovskite solar cells based self-charging power packs: Fundamentals, applications and challenges. Nano Energy 94, 106910 (2022).
Google Scholar
Xu, C. et al. Future material demand for automotive lithium-based batteries. Commun. Mater. 1, 99 (2020).
Google Scholar
Habib, K., Hansdóttir, S. T. & Habib, H. Critical metals for electromobility: Global demand scenarios for passenger vehicles, 2015–2050. Resour. Conserv. Recycl. 154, 104603 (2020).
Google Scholar
Hao, H. et al. Impact of transport electrification on critical metal sustainability with a focus on the heavy-duty segment. Nat. Commun. 10, 5398 (2019).
Google Scholar
Ruhnau, O. & Qvist, S. Storage requirements in a 100% renewable electricity system: extreme events and inter-annual variability. Environ. Res. Lett. 17, 044018 (2022).
Google Scholar
Xu, C. et al. Electric vehicle batteries alone could satisfy short-term grid storage demand by as early as 2030. Nat. Commun. 14, 119 (2023).
Google Scholar
Liu, M. et al. Promoting decarbonization in China: Revealing the impact of various energy policies on the power sector based on a coupled model. Energies 17, 3234 (2024).
Google Scholar
Wang, P., Dai, H. C., Ren, S. Y., Zhao, D. Q. & Masui, T. Achieving Copenhagen target through carbon emission trading: Economic impacts assessment in Guangdong province of China. Energy 79, 212–227 (2015).
Google Scholar
National Energy Administration, Electric Power Planning & Engineering Institute, China Energy Media Group. Development Bluebook of New Energy Power System (China Electric Power Press, 2023).
National Development and Reform Commission, National Energy Administration. 14th Five-Year Plan for Modern Energy System. (2022).
National Energy Administration. Action Plan for Improving Standardization of Carbon Peaking and Neutralization in the Energy Sector. (2022).
International Energy Agency. The Role of Critical Minerals in Clean Energy Transitions. (2021).
Fishman, T. & Graedel, T. E. Impact of the establishment of US offshore wind power on neodymium flows. Nat. Sustain. 2, 332–338 (2019).
Google Scholar
Graedel, T. E., Harper, E. M., Nassar, N. T. & Reck, B. K. On the materials basis of modern society. Proc. Natl. Acad. Sci. USA 112, 6295–6300 (2015).
Google Scholar
Nuclear Energy Agency, International Atomic Energy Agency. Uranium 2022: Resources, Production and Demand (OECD Publishing, 2023).
link