Sub-technology market share strongly affects critical material constraints in power system transitions

0
Sub-technology market share strongly affects critical material constraints in power system transitions
  • Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 C. Nat. Clim. Change 5, 519–527 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Rockström, J. et al. A roadmap for rapid decarbonization. Science 355, 1269–1271 (2017).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Wang, Y. et al. Accelerating the energy transition towards photovoltaic and wind in China. Nature 619, 761–767 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Fan, J. L. et al. Co-firing plants with retrofitted carbon capture and storage for power-sector emissions mitigation. Nat. Clim. Change 13, 807–815 (2023).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Hertwich, E. G. et al. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl. Acad. Sci. USA 112, 6277–6282 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Vidal, O., Goffé, B. & Arndt, N. Metals for a low-carbon society. Nat. Geosci. 6, 894–896 (2013).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Kavlak, G., McNerney, J., Jaffe, R. L. & Trancik, J. E. Metal production requirements for rapid photovoltaics deployment. Energy Environ. Sci. 8, 1651–1659 (2015).

    Article 

    Google Scholar 

  • Elshkaki, A. Materials, energy, water, and emissions nexus impacts on the future contribution of PV solar technologies to global energy scenarios. Sci. Rep. 9, 19238 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pennington D., et al. Methodology for Establishing the EU List of Critical Raw Materials – Guidelines. (Publications Office of the European Union, 2017).

  • Graedel, T. E. & Cao, J. Metal spectra as indicators of development. Proc. Natl. Acad. Sci. USA 107, 20905–20910 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Watari, T. et al. Global metal use targets in line with climate goals. Environ. Sci. Technol. 54, 12476–12483 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Fthenakis, V. Sustainability of photovoltaics: The case for thin-film solar cells. Renew. Sustain. Energy Rev. 13, 2746–2750 (2009).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Zuser, A. & Rechberger, H. Considerations of resource availability in technology development strategies: The case study of photovoltaics. Resour. Conserv. Recycl. 56, 56–65 (2011).

    Article 
    MATH 

    Google Scholar 

  • Habib, K. & Wenzel, H. Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling. J. Clean. Prod. 84, 348–359 (2014).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Li, C. et al. Future material requirements for global sustainable offshore wind energy development. Renew. Sustain. Energy Rev. 164, 112603 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Li, J. S. et al. Critical rare-earth elements mismatch global wind-power ambitions. One Earth 3, 116–125 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • De Koning, A. et al. Metal supply constraints for a low-carbon economy? Resour. Conserv. Recycl. 129, 202–208 (2018).

    Article 
    MATH 

    Google Scholar 

  • Valero, A., Valero, A., Calvo, G. & Ortego, A. Material bottlenecks in the future development of green technologies. Renew. Sustain. Energy Rev. 93, 178–200 (2018).

    Article 
    MATH 

    Google Scholar 

  • Wang, S. et al. Future demand for electricity generation materials under different climate mitigation scenarios. Joule 7, 309–332 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Elshkaki, A. & Shen, L. Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications. Energy 180, 903–917 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Wang, P., Chen, L. Y., Ge, J. P., Cai, W. & Chen, W. Q. Incorporating critical material cycles into metal-energy nexus of China’s 2050 renewable transition. Appl. Energy 253, 113612 (2019).

    Article 

    Google Scholar 

  • Wei, W. et al. Toward carbon neutrality: Uncovering constraints on critical minerals in the Chinese power system. Fundam. Res. 2, 367–374 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Nassar, N. T., Wilburn, D. R. & Goonan, T. G. Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios. Appl. Energy 183, 1209–1226 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Moss, R., Tzimas, E., Kara, H., Willis, P. & Kooroshy, J. Critical Metals in Strategic Energy Technologies: Assessing Rare Metals as Supply-Chain Bottlenecks in Low-Carbon Energy Technologies. Publications Office of the European Union. (2011).

  • Carrara, S., Alves Dias, P., Plazzotta, B. & Pavel, C. Raw Materials Demand for Wind and Solar PV Technologies in the Transition Towards a Decarbonised Energy System. Publications Office of the European Union. (2020).

  • Gervais, E., Shammugam, S., Friedrich, L. & Schlegl, T. Raw material needs for the large-scale deployment of photovoltaics – Effects of innovation-driven roadmaps on material constraints until 2050. Renew. Sustain. Energy Rev. 137, 110589 (2021).

    Article 
    CAS 

    Google Scholar 

  • Månberger, A. & Stenqvist, B. Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development. Energy Policy 119, 226–241 (2018).

    Article 

    Google Scholar 

  • Junne, T., Wulff, N., Breyer, C. & Naegler, T. Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt. Energy 211, 118532 (2020).

    Article 
    CAS 

    Google Scholar 

  • Schlichenmaier, S. & Naegler, T. May material bottlenecks hamper the global energy transition towards the 1.5 °C target? Energy Rep 8, 14875–14887 (2022).

    Article 
    MATH 

    Google Scholar 

  • Yao, T., Geng, Y., Sarkis, J., Xiao, S. & Gao, Z. Dynamic neodymium stocks and flows analysis in China. Resour. Conserv. Recycl. 174, 105752 (2021).

    Article 
    CAS 

    Google Scholar 

  • Teodoro, C. A., et al. Comparison on the mechanical properties and corrosion resistance of zirlo and other zirconium alloys. In: 2007 International Nuclear Atlantic Conference – INAC 2007. Associação Brasileira de Energia Nuclear – ABEN (INAC, 2007).

  • Viebahn, P. et al. Assessing the need for critical minerals to shift the German energy system towards a high proportion of renewables. Renew. Sustain. Energy Rev. 49, 655–671 (2015).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Shammugam, S., Gervais, E., Schlegl, T. & Rathgeber, A. Raw metal needs and supply risks for the development of wind energy in Germany until 2050. J. Clean. Prod. 221, 738–752 (2019).

    Article 
    CAS 

    Google Scholar 

  • Benigni, P. et al. Enthalpy of mixing in the Ag-Cd-In ternary liquid phase. J. Chem. Thermodyn. 107, 207–215 (2017).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Akkuzin, S. A., Litovchenko, I. Y., Tymentsev, A. N. & Chernov, V. M. Microstructure and mechanical properties of austenitic steel EK-164 after thermomechanical treatments. Russ. Phys. J. 62, 698–704 (2019).

    Article 
    CAS 

    Google Scholar 

  • Watari, T. et al. Total material requirement for the global energy transition to 2050: A focus on transport and electricity. Resour. Conserv. Recycl. 148, 91–103 (2019).

    Article 
    MATH 

    Google Scholar 

  • Wang, P. et al. Critical mineral constraints in global renewable scenarios under 1.5 °C target. Environ. Res. Lett. 17, 125004 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Green, M. A. et al. Solar cell efficiency tables (Version 60). Prog. Photovolt. Res. Appl. 30, 687–701 (2022).

    Article 
    MATH 

    Google Scholar 

  • Fraunhofer Institute for Solar Energy Systems. Photovoltaics Report. (2024).

  • Lee, T. D. & Ebong, A. U. A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 70, 1286–1297 (2017).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Woodhouse, M. A., Smith, B., Ramdas, A. & Margolis, R. M. Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Road Map. (2019).

  • Sofia, S. E. et al. Economic viability of thin-film tandem solar modules in the United States. Nat. Energy 3, 387–394 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • International Renewable Energy Agency. Renewable Power Generation Costs in 2023. (2024).

  • Tian, X., Gong, Y., Wu, Y., Agyeiwaa, A. & Zuo, T. Management of used lead acid battery in China: Secondary lead industry progress, policies and problems. Resour. Conserv. Recycl. 93, 75–84 (2014).

    Article 

    Google Scholar 

  • Song, Z. et al. A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy Environ. Sci. 10, 1297–1305 (2017).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • De Bastiani, M., Larini, V., Montecucco, R. & Grancini, G. The levelized cost of electricity from perovskite photovoltaics. Energy Environ. Sci. 16, 421–429 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Duan, L. et al. Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat. Rev. Mater. 8, 261–281 (2023).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Rong, Y. et al. Challenges for commercializing perovskite solar cells. Science 361, eaat8235 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Siegler, T. D. et al. The path to perovskite commercialization: A perspective from the United States Solar Energy Technologies Office. ACS Energy Lett 7, 1728–1734 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Carroll, J. et al. Availability, operation and maintenance costs of offshore wind turbines with different drive train configurations. Wind Energy 20, 361–378 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Lacal-Arantegui, R. Materials use in electricity generators in wind turbines – State-of-the-art and future specifications. J. Clean. Prod. 87, 275–283 (2015).

    Article 

    Google Scholar 

  • Colmenar-Santos, A., Perera-Perez, J., Borge-Diez, D. & dePalacio-Rodríguez, C. Offshore wind energy: A review of the current status, challenges and future development in Spain. Renew. Sustain. Energy Rev. 64, 1–18 (2016).

    Article 

    Google Scholar 

  • Pavel, C. C. et al. Substitution strategies for reducing the use of rare earths in wind turbines. Resour. Policy 52, 349–357 (2017).

    Article 
    MATH 

    Google Scholar 

  • Smith Stegen, K. Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis. Energy Policy 79, 1–8 (2015).

    Article 
    CAS 

    Google Scholar 

  • Caduff, M., Huijbregts, M. A. J., Althaus, H. J., Koehler, A. & Hellweg, S. Wind power electricity: The bigger the turbine, the greener the electricity? Environ. Sci. Technol. 46, 4725–4733 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jensen, B. B., Mijatovic, N. & Abrahamsen, A. B. Development of superconducting wind turbine generators. J. Renew. Sustain. Energy 5, 023137 (2013).

    Article 
    MATH 

    Google Scholar 

  • International Renewable Energy Agency. IRENASTAT Online Data Query Tool. (2024).

  • Millot, A., Krook-Riekkola, A. & Maïzi, N. Guiding the future energy transition to net-zero emissions: Lessons from exploring the differences between France and Sweden. Energy Policy 139, 111358 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wübbeke, J. Rare earth elements in China: Policies and narratives of reinventing an industry. Resour. Policy 38, 384–394 (2013).

    Article 
    MATH 

    Google Scholar 

  • Shen, Y., Moomy, R. & Eggert, R. G. China’s public policies toward rare earths, 1975–2018. Miner. Econ. 33, 127–151 (2020).

    Article 

    Google Scholar 

  • Han, Z. et al. Tracking two decades of global gallium stocks and flows: A dynamic material flow analysis. Resour. Conserv. Recycl. 202, 107391 (2024).

    Article 
    CAS 

    Google Scholar 

  • Frenzel, M., Ketris, M. P., Seifert, T. & Gutzmer, J. On the current and future availability of gallium. Resour. Policy 47, 38–50 (2016).

    Article 

    Google Scholar 

  • Frenzel, M., Mikolajczak, C., Reuter, M. A. & Gutzmer, J. Quantifying the relative availability of high-tech by-product metals – The cases of gallium, germanium and indium. Resour. Policy 52, 327–335 (2017).

    Article 

    Google Scholar 

  • Song, H., Wang, C., Sun, K., Geng, H. & Zuo, L. Material efficiency strategies across the industrial chain to secure indium availability for global carbon neutrality. Resour. Policy 85, 103895 (2023).

    Article 
    MATH 

    Google Scholar 

  • Funari, V. et al. Opportunities and threats of selenium supply from unconventional and low-grade ores: A critical review. Resour. Conserv. Recycl. 170, 105593 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Hanna, F., Nain, P. & Anctil, A. Material availability assessment using system dynamics: The case of tellurium. Prog. Photovolt. Res. Appl. 32, 253–266 (2024).

    Article 
    MATH 

    Google Scholar 

  • Nassar, N. T., Kim, H., Frenzel, M., Moats, M. S. & Hayes, S. M. Global tellurium supply potential from electrolytic copper refining. Resour. Conserv. Recycl. 184, 106434 (2022).

    Article 
    CAS 

    Google Scholar 

  • Song, H., Wang, C., Sen, B. & Liu, G. China factor: Exploring the byproduct and host metal dynamics for gallium–aluminum in a global green transition. Environ. Sci. Technol. 56, 2699–2708 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Zhang, L. & Xu, Z. Separating and recycling plastic, glass, and gallium from waste solar cell modules by nitrogen pyrolysis and vacuum decomposition. Environ. Sci. Technol. 50, 9242–9250 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, K., Benedetti, M. F. & van Hullebusch, E. D. Recovery technologies for indium, gallium, and germanium from end-of-life products (electronic waste) – A review. J. Environ. Manage. 347, 119043 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Z., Qiu, F., Tian, Q., Yue, X. & Zhang, T. Production and recovery of tellurium from metallurgical intermediates and electronic waste – A comprehensive review. J. Clean. Prod. 366, 132796 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • He, J. et al. Towards carbon neutrality: A study on China’s long-term low-carbon transition pathways and strategies. Environ. Sci. Ecotechnol. 9, 100134 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • International Energy Agency. Net Zero by 2050: A Roadmap for the Global Energy Sector. (2021).

  • Zhang, S. et al. Targeting net-zero emissions while advancing other sustainable development goals in China. Nat. Sustain. 7, 1107–1119 (2024).

    Article 
    MATH 

    Google Scholar 

  • Krieger, E. M., Cannarella, J. & Arnold, C. B. A comparison of lead-acid and lithium-based battery behavior and capacity fade in off-grid renewable charging applications. Energy 60, 492–500 (2013).

    Article 
    CAS 

    Google Scholar 

  • Um, H. D. et al. Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries. Energy Environ. Sci. 10, 931–940 (2017).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Yang, Y. et al. Perovskite solar cells based self-charging power packs: Fundamentals, applications and challenges. Nano Energy 94, 106910 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Xu, C. et al. Future material demand for automotive lithium-based batteries. Commun. Mater. 1, 99 (2020).

    Article 
    MATH 

    Google Scholar 

  • Habib, K., Hansdóttir, S. T. & Habib, H. Critical metals for electromobility: Global demand scenarios for passenger vehicles, 2015–2050. Resour. Conserv. Recycl. 154, 104603 (2020).

    Article 
    MATH 

    Google Scholar 

  • Hao, H. et al. Impact of transport electrification on critical metal sustainability with a focus on the heavy-duty segment. Nat. Commun. 10, 5398 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Ruhnau, O. & Qvist, S. Storage requirements in a 100% renewable electricity system: extreme events and inter-annual variability. Environ. Res. Lett. 17, 044018 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Xu, C. et al. Electric vehicle batteries alone could satisfy short-term grid storage demand by as early as 2030. Nat. Commun. 14, 119 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, M. et al. Promoting decarbonization in China: Revealing the impact of various energy policies on the power sector based on a coupled model. Energies 17, 3234 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Wang, P., Dai, H. C., Ren, S. Y., Zhao, D. Q. & Masui, T. Achieving Copenhagen target through carbon emission trading: Economic impacts assessment in Guangdong province of China. Energy 79, 212–227 (2015).

    Article 

    Google Scholar 

  • National Energy Administration, Electric Power Planning & Engineering Institute, China Energy Media Group. Development Bluebook of New Energy Power System (China Electric Power Press, 2023).

  • National Development and Reform Commission, National Energy Administration. 14th Five-Year Plan for Modern Energy System. (2022).

  • National Energy Administration. Action Plan for Improving Standardization of Carbon Peaking and Neutralization in the Energy Sector. (2022).

  • International Energy Agency. The Role of Critical Minerals in Clean Energy Transitions. (2021).

  • Fishman, T. & Graedel, T. E. Impact of the establishment of US offshore wind power on neodymium flows. Nat. Sustain. 2, 332–338 (2019).

    Article 

    Google Scholar 

  • Graedel, T. E., Harper, E. M., Nassar, N. T. & Reck, B. K. On the materials basis of modern society. Proc. Natl. Acad. Sci. USA 112, 6295–6300 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Nuclear Energy Agency, International Atomic Energy Agency. Uranium 2022: Resources, Production and Demand (OECD Publishing, 2023).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *