Solar cells combined with geothermal or wind power systems reduces climate and environmental impact

0
Solar cells combined with geothermal or wind power systems reduces climate and environmental impact
  • Koh, S. et al. Drivers of US toxicological footprints trajectory 1998–2013. Sci. Rep. 6, 39514 (2016).

    Article 
    CAS 

    Google Scholar 

  • Cao, Y. et al. Energy, exergy, and economic analyses of a novel biomass-based multigeneration system integrated with multi-effect distillation, electrodialysis, and LNG tank. Desalination 526, 115550 (2022).

    Article 
    CAS 

    Google Scholar 

  • Vargas, C. A., Caracciolo, L. & Ball, P. J. Geothermal energy as a means to decarbonize the energy mix of megacities. Commun. Earth Environ. 3, 66 (2022).

    Article 

    Google Scholar 

  • Schomberg, A. C., Bringezu, S., Flörke, M. & Biederbick, H. Spatially explicit life cycle assessments reveal hotspots of environmental impacts from renewable electricity generation. Commun. Earth Environ. 3, 197 (2022).

    Article 

    Google Scholar 

  • Dhakal, S. et al. Emissions Trends and Drivers (Chapter 2), (2022).

  • Mi, Z. & Sun, X. Provinces with transitions in industrial structure and energy mix performed best in climate change mitigation in China. Commun. Earth Environ. 2, 182 (2021).

    Article 

    Google Scholar 

  • Kabayo, J., Marques, P., Garcia, R. & Freire, F. Life-cycle sustainability assessment of key electricity generation systems in Portugal. Energy 176, 131–142 (2019).

    Article 

    Google Scholar 

  • Babacan, O. et al. Assessing the feasibility of carbon dioxide mitigation options in terms of energy usage. Nat. Energy 5, 720–728 (2020).

    Article 
    CAS 

    Google Scholar 

  • Shamoushaki, M., Ehyaei, M. A. & Ghanatir, F. Exergy, economic and environmental analysis and multi-objective optimization of a SOFC-GT power plant. Energy 134, 515–531 (2017).

    Article 

    Google Scholar 

  • Cucchiella, F., D’Adamo, I., Gastaldi, M., Koh, S. C. L. & Rosa, P. A comparison of environmental and energetic performance of European countries: A sustainability index. Renew. Sustain. Energy Rev. 78, 401–413 (2017).

    Article 

    Google Scholar 

  • Chen, S. et al. Deploying solar photovoltaic energy first in carbon-intensive regions brings gigatons more carbon mitigations to 2060. Commun. Earth Environ. 4, 369 (2023).

    Article 

    Google Scholar 

  • Ahmed, S. F. et al. Perovskite solar cells: Thermal and chemical stability improvement, and economic analysis. Mater. Today Chem. 27, 101284 (2023).

    Article 
    CAS 

    Google Scholar 

  • Urbina, A. The balance between efficiency, stability and environmental impacts in perovskite solar cells: a review. J. Phys.: Energy 2, 022001 (2020).

    CAS 

    Google Scholar 

  • Shamoushaki, M., Fiaschi, D., Manfrida, G. & Talluri, L. Energy, exergy, economic and environmental (4E) analyses of a geothermal power plant with NCGs reinjection. Energy 244, 122678 (2022).

    Article 

    Google Scholar 

  • Shamoushaki, M., Aliehyaei, M. & Rosen, M. A. Energy, exergy, exergoeconomic and exergoenvironmental impact analyses and optimization of various geothermal power cycle configurations. Entropy 23, 1483 (2021).

    Article 

    Google Scholar 

  • Zhang, S. et al. Thermodynamic analysis on a novel bypass steam recovery system for parabolic trough concentrated solar power plants during start-up processes. Renew. Energy 198, 973–983 (2022).

    Article 

    Google Scholar 

  • Wang, A., Han, X., Liu, M., Yan, J. & Liu, J. Thermodynamic and economic analyses of a parabolic trough concentrating solar power plant under off-design conditions. Appl. Therm. Eng. 156, 340–350 (2019).

    Article 

    Google Scholar 

  • Aghbashlo, M., Tabatabaei, M., Hosseini, S. S., B. Dashti, B. & Mojarab Soufiyan, M. Performance assessment of a wind power plant using standard exergy and extended exergy accounting (EEA) approaches. J. Clean. Prod. 171, 127–136 (2018).

    Article 

    Google Scholar 

  • Redha, A. M., Dincer, I. & Gadalla, M. Thermodynamic performance assessment of wind energy systems: An application. Energy 36, 4002–4010 (2011).

    Article 

    Google Scholar 

  • Shamoushaki, M., Aliehyaei, M. & Taghizadeh-Hesary, F. Energy, exergy, exergoeconomic, and exergoenvironmental assessment of flash-binary geothermal combined cooling, heating and power cycle. Energies 14, 4464 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ehyaei, M., Esmaeilion, F., Shamoushaki, M., Afshari, H. & Das, B. The feasibility study of the production of Bitcoin with geothermal energy: Case study. Energy Sci. Eng. 12, 755–770 (2023).

    Article 

    Google Scholar 

  • Boukelia, T. E., Arslan, O. & Bouraoui, A. Thermodynamic performance assessment of a new solar tower-geothermal combined power plant compared to the conventional solar tower power plant. Energy 232, 121109 (2021).

    Article 

    Google Scholar 

  • Alibaba, M., Pourdarbani, R., Manesh, M. H. K., Ochoa, G. V. & Forero, J. D. Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept. Heliyon 6, e03758 (2020).

    Article 

    Google Scholar 

  • Yang, Z., Wang, Z., Ran, P., Li, Z. & Ni, W. Thermodynamic analysis of a hybrid thermal-compressed air energy storage system for the integration of wind power. Appl. Therm. Eng. 66, 519–527 (2014).

    Article 

    Google Scholar 

  • Sezer, N. & Koç, M. Development and performance assessment of a new integrated solar, wind, and osmotic power system for multigeneration, based on thermodynamic principles. Energy Convers. Manag. 188, 94–111 (2019).

    Article 
    CAS 

    Google Scholar 

  • Fiaschi, D., Manfrida, G., Mendecka, B., Shamoushaki, M. & Talluri, L. Exergy and Exergo-environmental analysis of an ORC for a geothermal application. in E3S Web of Conferences. 238, 01011, (EDP Sciences). (2021).

  • Parisi, M. L., Ferrara, N., Torsello, L. & Basosi, R. Life cycle assessment of atmospheric emission profiles of the Italian geothermal power plants. J. Clean. Prod. 234, 881–894 (2019).

    Article 

    Google Scholar 

  • Kjeld, A., Bjarnadottir, H. J. & Olafsdottir, R. Life cycle assessment of the Theistareykir geothermal power plant in Iceland. Geothermics 105, 102530 (2022).

    Article 

    Google Scholar 

  • Tian, X., Stranks, S. D. & You, F. Life cycle assessment of recycling strategies for perovskite photovoltaic modules. Nat. Sustainability 4, 821–829 (2021).

    Article 

    Google Scholar 

  • Gasa, G., Prieto, C., Lopez-Roman, A. & Cabeza, L. F. Life cycle assessment (LCA) of a concentrating solar power (CSP) plant in tower configuration with different storage capacity in molten salts. J. Energy Storage 53, 105219 (2022).

    Article 

    Google Scholar 

  • Ibn-Mohammed, T. et al. Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renew. Sustain. Energy Rev. 80, 1321–1344 (2017).

    Article 
    CAS 

    Google Scholar 

  • Soares, W. M., Athayde, D. D. & Nunes, E. H. LCA study of photovoltaic systems based on different technologies. Int. J. Green. Energy 15, 577–583 (2018).

    Article 

    Google Scholar 

  • Rashedi, A. & Khanam, T. Life cycle assessment of most widely adopted solar photovoltaic energy technologies by mid-point and end-point indicators of ReCiPe method. Environ. Sci. Pollut. Res. 27, 29075–29090 (2020).

    Article 
    CAS 

    Google Scholar 

  • Das, U. & Nandi, C. Life cycle assessment on onshore wind farm: An evaluation of wind generators in India. Sustain. Energy Technol. Assess. 53, 102647 (2022).

    Google Scholar 

  • Mello, G., Ferreira Dias, M. & Robaina, M. Wind farms life cycle assessment review: CO2 emissions and climate change. Energy Rep. 6, 214–219 (2020).

    Article 

    Google Scholar 

  • Park, N.-G. Green solvent for perovskite solar cell production. Nat. Sustainability 4, 192–193 (2021).

    Article 

    Google Scholar 

  • Eufrasio Espinosa, R. M. & Lenny Koh, S. Forecasting the ecological footprint of G20 countries in the next 30 years. Sci. Rep. 14, 8298 (2024).

    Article 
    CAS 

    Google Scholar 

  • Nguyen, V. N. et al. Potential of explainable artificial intelligence in advancing renewable energy: challenges and prospects. Energy Fuels 38, 1692–1712 (2024).

    Article 
    CAS 

    Google Scholar 

  • Cavalett, O., Watanabe, M. D., Fleiger, K., Hoenig, V. & Cherubini, F. LCA and negative emission potential of retrofitted cement plants under oxyfuel conditions at high biogenic fuel shares. Sci. Rep. 12, 8924 (2022).

    Article 
    CAS 

    Google Scholar 

  • Gontard, N., David, G., Guilbert, A. & Sohn, J. Recognizing the long-term impacts of plastic particles for preventing distortion in decision-making. Nat. Sustainability 5, 472–478 (2022).

    Article 

    Google Scholar 

  • Ibn-Mohammed, T. et al. Integrated hybrid life cycle assessment and supply chain environmental profile evaluations of lead-based (lead zirconate titanate) versus lead-free (potassium sodium niobate) piezoelectric ceramics. Energy Environ. Sci. 9, 3495–3520 (2016).

    Article 
    CAS 

    Google Scholar 

  • Lan, K. & Yao, Y. Feasibility of gasifying mixed plastic waste for hydrogen production and carbon capture and storage. Commun. Earth Environ. 3, 300 (2022).

    Article 

    Google Scholar 

  • Smith, L., Ibn-Mohammed, T., Koh, S. C. L. & Reaney, I. M. Life cycle assessment and environmental profile evaluations of high volumetric efficiency capacitors. Appl. Energy 220, 496–513 (2018).

    Article 
    CAS 

    Google Scholar 

  • Ögmundarson, Ó., Herrgård, M. J., Forster, J., Hauschild, M. Z. & Fantke, P. Addressing environmental sustainability of biochemicals. Nat. Sustainability 3, 167–174 (2020).

    Article 

    Google Scholar 

  • Hellweg, S., Benetto, E., Huijbregts, M. A., Verones, F. & Wood, R. Life-cycle assessment to guide solutions for the triple planetary crisis. Nat. Rev. Earth Environ. 4, 471–486 (2023).

    Article 

    Google Scholar 

  • van der Werf, H. M., Knudsen, M. T. & Cederberg, C. Towards better representation of organic agriculture in life cycle assessment. Nat. Sustainability 3, 419–425 (2020).

    Article 

    Google Scholar 

  • Standardization, International Organization for “Environmental management: life cycle assessment: principles and framework.” Vol. ISO 14040 (2006).

  • Smith, L., Ibn‐Mohammed, T., Koh, L. & Reaney, I. M. Life cycle assessment of functional materials and devices: Opportunities, challenges, and current and future trends. J. Am. Ceram. Soc. 102, 7037–7064 (2019).

    Article 
    CAS 

    Google Scholar 

  • Eufrasio, R. M. et al. Environmental and health impacts of atmospheric CO2 removal by enhanced rock weathering depend on nations’ energy mix. Commun. Earth Environ. 3, 106 (2022).

    Article 

    Google Scholar 

  • Peters, J. F. Best practices for life cycle assessment of batteries. Nat. Sustainability 6, 614–616 (2023).

    Article 

    Google Scholar 

  • Shamoushaki, M. & Koh, S. L. Heat pump supply chain environmental impact reduction to improve the UK energy sustainability, resiliency and security. Sci. Rep. 13, 20633 (2023).

    Article 
    CAS 

    Google Scholar 

  • Goucher, L., Bruce, R., Cameron, D. D., Lenny Koh, S. & Horton, P. The environmental impact of fertilizer embodied in a wheat-to-bread supply chain. Nat. Plants 3, 1–5 (2017).

    Article 

    Google Scholar 

  • Gkousis, S., Thomassen, G., Welkenhuysen, K. & Compernolle, T. Dynamic life cycle assessment of geothermal heat production from medium enthalpy hydrothermal resources. Appl. Energy 328, 120176 (2022).

    Article 

    Google Scholar 

  • Zuffi, C., Manfrida, G., Asdrubali, F. & Talluri, L. Life cycle assessment of geothermal power plants: A comparison with other energy conversion technologies. Geothermics 104, 102434 (2022).

    Article 

    Google Scholar 

  • Gong, J., Darling, S. B. & You, F. Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy Environ. Sci. 8, 1953–1968 (2015).

    Article 
    CAS 

    Google Scholar 

  • Ramamurthy Rao, H. K., Gemechu, E., Thakur, U., Shankar, K. & Kumar, A. Life cycle assessment of high-performance monocrystalline titanium dioxide nanorod-based perovskite solar cells. Sol. Energy Mater. Sol. Cells 230, 111288 (2021).

    Article 
    CAS 

    Google Scholar 

  • Angelakoglou, K., Botsaris, P. N. & Gaidajis, G. Issues regarding wind turbines positioning: A benchmark study with the application of the life cycle assessment approach. Sustain. Energy Technol. Assess. 5, 7–18 (2014).

    Google Scholar 

  • Heberle, F., Schifflechner, C. & Brüggemann, D. Life cycle assessment of Organic Rankine Cycles for geothermal power generation considering low-GWP working fluids. Geothermics 64, 392–400 (2016).

    Article 

    Google Scholar 

  • Frischknecht, R. et al. The ecoinvent database: overview and methodological framework (7 pp). Int. J. life cycle Assess. 10, 3–9 (2005).

    Article 
    CAS 

    Google Scholar 

  • Ahmed, A. et al. Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy Environ. Sci. 10, 653–671 (2017).

    Article 
    CAS 

    Google Scholar 

  • Alengebawy, A. et al. Understanding the environmental impacts of biogas utilization for energy production through life cycle assessment: An action towards reducing emissions. Environ. Res. 213, 113632 (2022).

    Article 
    CAS 

    Google Scholar 

  • Christensen, T. H. et al. Application of LCA modelling in integrated waste management. Waste Manag. 118, 313–322 (2020).

    Article 
    CAS 

    Google Scholar 

  • Prasad, S. et al. Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective. Bioresour. Technol. 303, 122964 (2020).

    Article 
    CAS 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *