Solar cells combined with geothermal or wind power systems reduces climate and environmental impact
Koh, S. et al. Drivers of US toxicological footprints trajectory 1998–2013. Sci. Rep. 6, 39514 (2016).
Google Scholar
Cao, Y. et al. Energy, exergy, and economic analyses of a novel biomass-based multigeneration system integrated with multi-effect distillation, electrodialysis, and LNG tank. Desalination 526, 115550 (2022).
Google Scholar
Vargas, C. A., Caracciolo, L. & Ball, P. J. Geothermal energy as a means to decarbonize the energy mix of megacities. Commun. Earth Environ. 3, 66 (2022).
Google Scholar
Schomberg, A. C., Bringezu, S., Flörke, M. & Biederbick, H. Spatially explicit life cycle assessments reveal hotspots of environmental impacts from renewable electricity generation. Commun. Earth Environ. 3, 197 (2022).
Google Scholar
Dhakal, S. et al. Emissions Trends and Drivers (Chapter 2), (2022).
Mi, Z. & Sun, X. Provinces with transitions in industrial structure and energy mix performed best in climate change mitigation in China. Commun. Earth Environ. 2, 182 (2021).
Google Scholar
Kabayo, J., Marques, P., Garcia, R. & Freire, F. Life-cycle sustainability assessment of key electricity generation systems in Portugal. Energy 176, 131–142 (2019).
Google Scholar
Babacan, O. et al. Assessing the feasibility of carbon dioxide mitigation options in terms of energy usage. Nat. Energy 5, 720–728 (2020).
Google Scholar
Shamoushaki, M., Ehyaei, M. A. & Ghanatir, F. Exergy, economic and environmental analysis and multi-objective optimization of a SOFC-GT power plant. Energy 134, 515–531 (2017).
Google Scholar
Cucchiella, F., D’Adamo, I., Gastaldi, M., Koh, S. C. L. & Rosa, P. A comparison of environmental and energetic performance of European countries: A sustainability index. Renew. Sustain. Energy Rev. 78, 401–413 (2017).
Google Scholar
Chen, S. et al. Deploying solar photovoltaic energy first in carbon-intensive regions brings gigatons more carbon mitigations to 2060. Commun. Earth Environ. 4, 369 (2023).
Google Scholar
Ahmed, S. F. et al. Perovskite solar cells: Thermal and chemical stability improvement, and economic analysis. Mater. Today Chem. 27, 101284 (2023).
Google Scholar
Urbina, A. The balance between efficiency, stability and environmental impacts in perovskite solar cells: a review. J. Phys.: Energy 2, 022001 (2020).
Google Scholar
Shamoushaki, M., Fiaschi, D., Manfrida, G. & Talluri, L. Energy, exergy, economic and environmental (4E) analyses of a geothermal power plant with NCGs reinjection. Energy 244, 122678 (2022).
Google Scholar
Shamoushaki, M., Aliehyaei, M. & Rosen, M. A. Energy, exergy, exergoeconomic and exergoenvironmental impact analyses and optimization of various geothermal power cycle configurations. Entropy 23, 1483 (2021).
Google Scholar
Zhang, S. et al. Thermodynamic analysis on a novel bypass steam recovery system for parabolic trough concentrated solar power plants during start-up processes. Renew. Energy 198, 973–983 (2022).
Google Scholar
Wang, A., Han, X., Liu, M., Yan, J. & Liu, J. Thermodynamic and economic analyses of a parabolic trough concentrating solar power plant under off-design conditions. Appl. Therm. Eng. 156, 340–350 (2019).
Google Scholar
Aghbashlo, M., Tabatabaei, M., Hosseini, S. S., B. Dashti, B. & Mojarab Soufiyan, M. Performance assessment of a wind power plant using standard exergy and extended exergy accounting (EEA) approaches. J. Clean. Prod. 171, 127–136 (2018).
Google Scholar
Redha, A. M., Dincer, I. & Gadalla, M. Thermodynamic performance assessment of wind energy systems: An application. Energy 36, 4002–4010 (2011).
Google Scholar
Shamoushaki, M., Aliehyaei, M. & Taghizadeh-Hesary, F. Energy, exergy, exergoeconomic, and exergoenvironmental assessment of flash-binary geothermal combined cooling, heating and power cycle. Energies 14, 4464 (2021).
Google Scholar
Ehyaei, M., Esmaeilion, F., Shamoushaki, M., Afshari, H. & Das, B. The feasibility study of the production of Bitcoin with geothermal energy: Case study. Energy Sci. Eng. 12, 755–770 (2023).
Google Scholar
Boukelia, T. E., Arslan, O. & Bouraoui, A. Thermodynamic performance assessment of a new solar tower-geothermal combined power plant compared to the conventional solar tower power plant. Energy 232, 121109 (2021).
Google Scholar
Alibaba, M., Pourdarbani, R., Manesh, M. H. K., Ochoa, G. V. & Forero, J. D. Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept. Heliyon 6, e03758 (2020).
Google Scholar
Yang, Z., Wang, Z., Ran, P., Li, Z. & Ni, W. Thermodynamic analysis of a hybrid thermal-compressed air energy storage system for the integration of wind power. Appl. Therm. Eng. 66, 519–527 (2014).
Google Scholar
Sezer, N. & Koç, M. Development and performance assessment of a new integrated solar, wind, and osmotic power system for multigeneration, based on thermodynamic principles. Energy Convers. Manag. 188, 94–111 (2019).
Google Scholar
Fiaschi, D., Manfrida, G., Mendecka, B., Shamoushaki, M. & Talluri, L. Exergy and Exergo-environmental analysis of an ORC for a geothermal application. in E3S Web of Conferences. 238, 01011, (EDP Sciences). (2021).
Parisi, M. L., Ferrara, N., Torsello, L. & Basosi, R. Life cycle assessment of atmospheric emission profiles of the Italian geothermal power plants. J. Clean. Prod. 234, 881–894 (2019).
Google Scholar
Kjeld, A., Bjarnadottir, H. J. & Olafsdottir, R. Life cycle assessment of the Theistareykir geothermal power plant in Iceland. Geothermics 105, 102530 (2022).
Google Scholar
Tian, X., Stranks, S. D. & You, F. Life cycle assessment of recycling strategies for perovskite photovoltaic modules. Nat. Sustainability 4, 821–829 (2021).
Google Scholar
Gasa, G., Prieto, C., Lopez-Roman, A. & Cabeza, L. F. Life cycle assessment (LCA) of a concentrating solar power (CSP) plant in tower configuration with different storage capacity in molten salts. J. Energy Storage 53, 105219 (2022).
Google Scholar
Ibn-Mohammed, T. et al. Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renew. Sustain. Energy Rev. 80, 1321–1344 (2017).
Google Scholar
Soares, W. M., Athayde, D. D. & Nunes, E. H. LCA study of photovoltaic systems based on different technologies. Int. J. Green. Energy 15, 577–583 (2018).
Google Scholar
Rashedi, A. & Khanam, T. Life cycle assessment of most widely adopted solar photovoltaic energy technologies by mid-point and end-point indicators of ReCiPe method. Environ. Sci. Pollut. Res. 27, 29075–29090 (2020).
Google Scholar
Das, U. & Nandi, C. Life cycle assessment on onshore wind farm: An evaluation of wind generators in India. Sustain. Energy Technol. Assess. 53, 102647 (2022).
Mello, G., Ferreira Dias, M. & Robaina, M. Wind farms life cycle assessment review: CO2 emissions and climate change. Energy Rep. 6, 214–219 (2020).
Google Scholar
Park, N.-G. Green solvent for perovskite solar cell production. Nat. Sustainability 4, 192–193 (2021).
Google Scholar
Eufrasio Espinosa, R. M. & Lenny Koh, S. Forecasting the ecological footprint of G20 countries in the next 30 years. Sci. Rep. 14, 8298 (2024).
Google Scholar
Nguyen, V. N. et al. Potential of explainable artificial intelligence in advancing renewable energy: challenges and prospects. Energy Fuels 38, 1692–1712 (2024).
Google Scholar
Cavalett, O., Watanabe, M. D., Fleiger, K., Hoenig, V. & Cherubini, F. LCA and negative emission potential of retrofitted cement plants under oxyfuel conditions at high biogenic fuel shares. Sci. Rep. 12, 8924 (2022).
Google Scholar
Gontard, N., David, G., Guilbert, A. & Sohn, J. Recognizing the long-term impacts of plastic particles for preventing distortion in decision-making. Nat. Sustainability 5, 472–478 (2022).
Google Scholar
Ibn-Mohammed, T. et al. Integrated hybrid life cycle assessment and supply chain environmental profile evaluations of lead-based (lead zirconate titanate) versus lead-free (potassium sodium niobate) piezoelectric ceramics. Energy Environ. Sci. 9, 3495–3520 (2016).
Google Scholar
Lan, K. & Yao, Y. Feasibility of gasifying mixed plastic waste for hydrogen production and carbon capture and storage. Commun. Earth Environ. 3, 300 (2022).
Google Scholar
Smith, L., Ibn-Mohammed, T., Koh, S. C. L. & Reaney, I. M. Life cycle assessment and environmental profile evaluations of high volumetric efficiency capacitors. Appl. Energy 220, 496–513 (2018).
Google Scholar
Ögmundarson, Ó., Herrgård, M. J., Forster, J., Hauschild, M. Z. & Fantke, P. Addressing environmental sustainability of biochemicals. Nat. Sustainability 3, 167–174 (2020).
Google Scholar
Hellweg, S., Benetto, E., Huijbregts, M. A., Verones, F. & Wood, R. Life-cycle assessment to guide solutions for the triple planetary crisis. Nat. Rev. Earth Environ. 4, 471–486 (2023).
Google Scholar
van der Werf, H. M., Knudsen, M. T. & Cederberg, C. Towards better representation of organic agriculture in life cycle assessment. Nat. Sustainability 3, 419–425 (2020).
Google Scholar
Standardization, International Organization for “Environmental management: life cycle assessment: principles and framework.” Vol. ISO 14040 (2006).
Smith, L., Ibn‐Mohammed, T., Koh, L. & Reaney, I. M. Life cycle assessment of functional materials and devices: Opportunities, challenges, and current and future trends. J. Am. Ceram. Soc. 102, 7037–7064 (2019).
Google Scholar
Eufrasio, R. M. et al. Environmental and health impacts of atmospheric CO2 removal by enhanced rock weathering depend on nations’ energy mix. Commun. Earth Environ. 3, 106 (2022).
Google Scholar
Peters, J. F. Best practices for life cycle assessment of batteries. Nat. Sustainability 6, 614–616 (2023).
Google Scholar
Shamoushaki, M. & Koh, S. L. Heat pump supply chain environmental impact reduction to improve the UK energy sustainability, resiliency and security. Sci. Rep. 13, 20633 (2023).
Google Scholar
Goucher, L., Bruce, R., Cameron, D. D., Lenny Koh, S. & Horton, P. The environmental impact of fertilizer embodied in a wheat-to-bread supply chain. Nat. Plants 3, 1–5 (2017).
Google Scholar
Gkousis, S., Thomassen, G., Welkenhuysen, K. & Compernolle, T. Dynamic life cycle assessment of geothermal heat production from medium enthalpy hydrothermal resources. Appl. Energy 328, 120176 (2022).
Google Scholar
Zuffi, C., Manfrida, G., Asdrubali, F. & Talluri, L. Life cycle assessment of geothermal power plants: A comparison with other energy conversion technologies. Geothermics 104, 102434 (2022).
Google Scholar
Gong, J., Darling, S. B. & You, F. Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy Environ. Sci. 8, 1953–1968 (2015).
Google Scholar
Ramamurthy Rao, H. K., Gemechu, E., Thakur, U., Shankar, K. & Kumar, A. Life cycle assessment of high-performance monocrystalline titanium dioxide nanorod-based perovskite solar cells. Sol. Energy Mater. Sol. Cells 230, 111288 (2021).
Google Scholar
Angelakoglou, K., Botsaris, P. N. & Gaidajis, G. Issues regarding wind turbines positioning: A benchmark study with the application of the life cycle assessment approach. Sustain. Energy Technol. Assess. 5, 7–18 (2014).
Heberle, F., Schifflechner, C. & Brüggemann, D. Life cycle assessment of Organic Rankine Cycles for geothermal power generation considering low-GWP working fluids. Geothermics 64, 392–400 (2016).
Google Scholar
Frischknecht, R. et al. The ecoinvent database: overview and methodological framework (7 pp). Int. J. life cycle Assess. 10, 3–9 (2005).
Google Scholar
Ahmed, A. et al. Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy Environ. Sci. 10, 653–671 (2017).
Google Scholar
Alengebawy, A. et al. Understanding the environmental impacts of biogas utilization for energy production through life cycle assessment: An action towards reducing emissions. Environ. Res. 213, 113632 (2022).
Google Scholar
Christensen, T. H. et al. Application of LCA modelling in integrated waste management. Waste Manag. 118, 313–322 (2020).
Google Scholar
Prasad, S. et al. Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective. Bioresour. Technol. 303, 122964 (2020).
Google Scholar
link